CS 142 Final Examination

Winter Quarter 2023

You have 3 hours (180 minutes) for this examination; the number of points for each
question indicates roughly how many minutes you should spend on that question. Make
sure you print your name and sign the Honor Code below. During the examination you
may consult two double-sided pages of notes; all other sources of information, including
laptops, cell phones, etc. are prohibited.

| acknowledge and accept the Stanford University Honor Code. | have neither given nor
received aid in answering the questions on this examination.

(Signature)

(Print your name, legibly!)

@stanford.edu

(SUID - Stanford email account for grading database key)

Problem #1 #2 #3 #4 #5 #6 #H7 #8 #9 #10

Points 10 10 8 8 10 10 8 10 8 12

Problem #11 #12 #13 #14 #15 | #16 | #17 | #18 | #19 Total

Points 10 10 8 10 10 8 8 10 12 180

Only the front side of the exam pages will be scanned. Do not write answers on the back
of the pages.

Problem #1 (10 points)

The Node.js web server (webServer.js) you built for your photo-sharing app used Express
Session to provide session state (i.e., the app.use(session({secret: "secretKey",
resave: false, saveUninitialized: false})); line we had you add in Project 7). The
Express Session code creates a session cookie to track the session state you use. A
disadvantage of using cookies for this is it can increase the size of the HTTP header in both the
HTTP request (i.e. cookie) and HTTP responses (i.e. set-cookie). Fortunately, not every
request and response is required to have an enlarged header. Below is a list of HTTP requests
from the photo-sharing app that has the user "took" log in, upload a photo, and log out. Assume
it is being run on a cold browser (i.e., no cookies or cached data). For each list request, mark if it
has an enlarged header:

A)
HTTP Request HTTP Request HTTP Response
Header has cookie Header has cookie

GET /photo-share.html Yes No Yes No
GET /compiled/photoShare.bundle.js Yes No Yes No
POST /admin/login Yes No Yes No
GET /user/list Yes No Yes No
GET /user/641522690b7c2361d10cba67 Yes No Yes No
POST /photos/new Yes No Yes No
POST /admin/logout Yes No

B)

Express session uses an optimization that allows the session state to get bigger without the
cookie getting bigger. Describe how more session state doesn't require more cookie bytes.

Problem #2 (10 points)

A Content Distribution Network (CDN) gets content from the web application developer and
ends up responding to HTTP requests from the web app users’ browsers. The CDN gets to
decide what header fields it sets in the HTTP responses it sends out. For each of the following
header fields, state if the CDN would have a reason to set it and if so, what value would they
use.

(A) Cache-Control: max-age parameter

(B) Access-Control-Allow-Origin:

Problem #3 (8 points)

In the HTTP lecture, the following JavaScript code fragment was listed on a slide:

elm.innerHTML =
"<script src="http://www.example.com/myJS.js" type="text/javascript" />"

We can assume that the code was loaded from the same web server as the script:
https://www.example.com

The fragment was labeled "Scary but useful". Is it any more or less scary if the code was
changed to be:

elm.innerHTML = "<script src="/myJS.js" type="text/javascript" />"

Problem #4 (8 points)

Explain the problem with REST APIs when dealing with operations that span across multiple
resources that are not present in GraphQL or RPC-based APls.

Problem #5 (10 points)

Some students ran into problems coding the Project 6 Express handlers like
app.get('/user/list', function (request, response) {

The problem they ran into was that they tried to code the handler using await and got the error:

SyntaxError: await is only valid in async functions

In response this error, they changed the handler setup code to be:
app.get('/user/list', async function (request, response) {
and not only did the error go away, it worked as expected.

In general, changing a function that is called by some other module (i.e. a callback function) to
be an async function is not guaranteed to work. For each of the callback function scenarios
below, explain why the addition of the async and await keywords could fail.

(A) A module accepts a callback function (callback) that returns a count of items. The
module does let itemCount = callback();. The async/await change allows the
callback function to read from the database.

(B) A module accepts a callback function (doAllCallback) that the module calls before
signaling that everything is done. The module assumes that all of the processing of
doAllCallback is finished when the callback function returns. The async/await change
allows the doAllCallback function to read from the database.

Problem #6 (10 points)

When implementing RPC systems that can be used between browsers and web servers, some
communication mechanism is needed. Since the browser and web servers already
communicate using the HTTP protocol, it is an obvious choice to base an RPC implementation

on.
(A) When using an RPC system to make calls from the browser to the web server, the RPC

system often uses the POST verb. Explain why POST is preferred for RPC over verbs
like PUT or GET.

(B) RPC systems that allow calls from the web server to the browser often choose not to run
over HTTP. Explain why.

Problem #7 (8 points)

The operating system socket system calls are used to speak the TCP/IP protocol between the
Node.js webServer.js and the MongoDB database server. Using this TCP/IP connection, the
MongoDB node modules can send queries and receive results from the database. Since both
the Node.js process and the MongoDB server are running on the same machine, the TCP/IP
connection can be made using the hostname of "localhost".

This quarter some students' laptops ran into a problem. There are now two localhost addresses,
one using IPv4 addressing and one that uses the newer IPv6. The problem occurred because
there was a disagreement between the web server running in Node.js and MongoDB which
localhost address (IPv4 or IPv6) to use. We were able to patch around this problem by forcing
an agreement on which address to use.

The browser and webServer.js also use the hostname "localhost" to communicate. We load our
web application from http://localhost:3000/photo-share.html. Although we haven't
seen a mismatch of which "localhost" to use here, is there something in the browser
environment, HTTP, JavaScript, etc., that would prevent this same problem? If so, describe it. If
not, explain why.

Problem #8 (10 points)

The issue with "localhost" described in Problem #7 is made more complex since we speak to
the database using two different node modules authored by different groups. Our code uses the
Mongoose module, which talks to the MongoDB Node client library, which can speak to the
MongoDB data server. When something goes wrong with this communication path, it's hard to
tell which module (Mongoose or MongoDB client library) is at fault. What benefits would be lost
if we got rid of Mongoose and talked directly to the MongoDB module?

Problem #9 (8 points)

Explain why relational databases can have both primary and secondary indexes but MongoDB
users can only declare secondary indexes.

10

Problem #10 (12 points)

By the time we got to Project 7, our Node.js webServer.js was using multiple Express
middleware modules. Each of these modules defines a handler function that takes three
parameters: function handler(request, response, next). Although these handlers are
called on every incoming HTTP request, not all of the parameters are accessed on every call.
For each of the following middleware insertion lines:
1. describe the middleware's use of the three parameters: request, response, next.
2. indicate if each parameter is accessed on every, some, or no calls.

app.use(session({ secret: "secretKey", resave: false, saveUninitialized:
false }));

app.use(bodyParser.json());

app.use(express.static(__dirname));

11

Problem #11 (10 points)

Browsers and web servers both talk TCP/IP and use the operating system socket abstraction to

send and receive data formatted as HTTP requests and responses. In the table below, for each
of the socket system calls, list if it is used often, infrequently, or never when doing HTTP

communication.

System Call

Browser

Web Server

listen

accept

read/receive

write/send

connect

12

Problem #12 (10 points)

The code fragment listed in the Database slides to update a User object with the id user_id was
shown as

User.findOne({_id: user_id}, function (err, user) {
// Update user object - (Note: Object is "special")
user.save();

1)

The pattern works by first reading the object from the MongoDB database into a Mongoose
persistent object that is updated and calling the save method on it causing the modified object to
be written back to the database.

(A) This kind of read-update-write sequence is scary in a system with threads since we need
to worry about multiple threads trying to update the same user_id. Assuming we have
only a single Node.js web server this quarter, is there something about JavaScript,
Node.js, or Express.js that makes this safe? Explain your answer and if the answer is no,
provide an example.

(B) Does the answer to the question in part (A) change if we assume this code is running in
a Node.js instance that is part of the scale-out architecture? Explain your answer and if
the answer is no, provide an example.

13

Problem #13 (8 points)

When we added Express Session to our web server we used the JavaScript expression:

app.use(session({secret: 'badSecret'}));

secret is a required parameter object to the session module that is used to "sign" the session
cookie. If we really used something like 'badSecret’, an easily guessable secret, what could an
attacker do to our web application?

14

Problem #14 (10 points)

Our React web application works by having front-end JavaScript code making REST calls to
resources we implement using Express handlers in a Node.js web server. If we implement a
REST endpoint in the web server but never add the corresponding JavaScript code to call this
endpoint, we can have "dead code" that is never executed by our web application.

(A) Explain why our threat model requires that even "dead code" be hardened against
attackers.

(B) If we always use HTTPS to defeat any possible "man-in-the-middle" attacks, do we still
need to harden "dead code"? Explain your answer.

15

Problem #15 (10 points)

To allow React child components to communicate with their parent components, we showed a
pattern that involved passing a function (a callback function) as a property from the parent to the
child. The child can then call the callback function to communicate with the parent.

We presented an alternative way to support this communication using state managers like
Redux. Rather than passing callback functions, this communication is done by having the parent
subscribe (listen) for an event and having the child emit the event.

The callback function as a prop to a component approach got much power because the callback
function could execute arbitrary JavaScript code. The state manager approach has the parent

subscribe and listen for an event.

Does the callback function approach's ability to execute arbitrary JavaScript code give it more
power than the state manager's listening for events? Explain your answer.

16

Problem #16 (8 points)

In the initial projects (Project 1-3) we didn't run a web server. It was possible to point the
browser at the local filesystem using the file: scheme and read the HTML and CSS files that
way. Using the file: scheme works to load our React web application bundle as well but any
requests to model data fail to even go out of the browser. Explain why the browser won't let us
load model data when the bundle is loaded using the file: scheme.

17

Problem #17 (8 points)

The Chrome browser shows a lock icon (e.g. .) when the page is fetched using HTTPS and

a warning message (4 NOUSecure) it the page is fetched using HTTP. If the page is fetched
using HTTPS and makes a single HTTP access (e.g. fetch an image or stylesheet) it is
displayed with the warning message. Explain why a single HTTP can ruin the security of a web

page.

18

Problem #18 (10 points)

For many things in life that fail, adopting a strategy of immediately retrying the failed operation is
not often a successful strategy. Web applications using a scale-out architecture are sometimes
an exception to this rule. Explain the reason for this.

19

Problem #19 (12 points)

One of the great things about programming with Node.js is the massive repositories of node
modules that give easy access to much functionality useful for building web applications. Pretty
much anything you might want can be "npm install"-ed.

One web area this npm approach has been less successful at addressing is security. For each
of the listed problem areas, state if a node module could be useful. Explain your answer.

(A) Distributed Denial of Service

(B) SQL injection attack

(C) Cross-site scripting attack

20

