

CS 142 Midterm Examination
Spring Quarter 2019

You have 1.5 hours (90 minutes) for this examination; the number of points for each
question indicates roughly how many minutes you should spend on that question. Make
sure you print your name and sign the Honor Code below. During the examination you
may consult two double-sided pages of notes; all other sources of information, including
laptops, cell phones, etc. are prohibited.

I acknowledge and accept the Stanford University Honor Code. I have neither given nor
received aid in answering the questions on this examination.

__
(Signature)

Solutions​___
 (Print your name, legibly!)

__@stanford.edu
(Stanford email account for grading database key)

Problem #1 #2 #3 #4 #5 #6 #7 #8 #9

Points 6 6 4 6 4 4 6 8 6

Problem #10 #11 #12 #13 #14 #15 #16 #17 #18 Total

Points 4 4 4 6 6 4 4 4 4 90

1

Problem #1 (6 points)

A. Fill in the blanks on the CSS box model diagram. Which is margin? padding? border?

 ​ Answer: Top to Bottom: padding, border, margin

B. What is the distance between the letters A and B if you had the following CSS rule?

A<div></div>B

div {

 height: 100px;

 width: 100px;

 padding: 10px;

 border-left-style: dotted;

 border-left-width: 5px;

 margin-top: 10px;

 margin-right: 20px;

 display: inline-block;

}

100 px (width) + 2 * 10 px (padding on either side) + 5 px (border-left width) + 20 px
(margin-right) = 145 px

2

Problem #2 (6 points)
When discussing the idea called​ Single Page Applications​ (SPA) in class we introduced the
term ​deep linking​. Show your understanding of these two terms by answering the following
questions about them.

A. The example single page applications we described in class supported deep linking.
Could you have a single page application that didn't support deep linking? If so, describe
what the shortcomings would be for it. If not, explain why not.

You could have a single page application that didn’t support deep linking. Without deep
linking though, the URL wouldn’t capture any context about the state of our app, and
thus important modern features of apps such as refreshing, bookmarking and sharing
links would be unsupported. Otherwise, the app would work fine. In fact, the early SPA
were like this and lead to the term deep linking.

B. Could you have a web application that did not use the single page application approach
(i.e. multiple pages) that supported deep linking? Justify your answer.

Yes, they support deep linking by default, by virtue of having multiple pages.

3

Problem #3 (4 points)
Most JavaScript frontend frameworks use the Model, View, Controller (MVC). Where Angular
and VueJS spread the view and controller parts across different files, ReactJS combines the
parts in a single file. For each of the blanks in the React component definition below, classify if
the method function would be considered ​view​ or ​controller​. Provide a brief explanation of your
classification below your answer.

class Board extends React.Component {

 constructor(props) {

 super(props);

 this.state = { squares: [] };

 }

 componentDidMount() { ​Controller because we are fetching model information
 axios.get(`http://example.com/squares`)

 .then(res => {

 this.setState({ squares: res.data });

 })

 }

 handleClick(i) { Controller because we are handling a user interaction

 const squares = this.state.squares.slice();

 squares[i] = 'X';

 this.setState({squares: squares});

 }

 renderSquare(i) { ​View because we are primarily generating the html, in
other words what the application looks like

 return (

 <Square

 value={this.state.squares[i]}

 onClick={() => this.handleClick(i)}

 />

);

 }

 render() { ​View because we are generating the html, in other words what the
application looks like

 return (

 <div>

 <div className="board-row">

 {this.renderSquare(0)}

 {this.renderSquare(1)}

 {this.renderSquare(2)}

 </div>

 </div>

);

 }

}

4

Problem #4 (6 points)
An URL is composed of multiple components including:

A. Query parameters
B. Fragment
C. Port
D. Hostname
E. Scheme
F. Hierarchical portion

A. Identify by underline and labeling with the letters above (i.e. A-F) indicate where the

above URL components are on this URL:

http://myth42.stanford.edu:3000/midterm/urls/links.html?year=3000&user=Mendel

____ __________________ ____ _______________________ ____________________
E D C F A

B. Javascript Regular Expression literals can have many of the common punctuation

characters in the character set. For example​ /[.*+?^${}()|[\]\\#@%&;:]/​ is a valid
regular expression literal.

1. Describe the issues that would arise if your web app needed to pass arbitrary
regular expressions in URLs to the web app's backend.

2. Describe how could you work around this problem.

 1. Punctuation characters have special meaning in URLs, such as the “.” or “-” character.
Passing these as parameters could change the meaning of your URL and send your browser to
an invalid/wrong URL. Many characters are also considered invalid (specifically, “unsafe” or
“reserved”) and may present security issues.

 2. Use the URL encodings for your Regular Expression characters (%xx) instead of the
character literals

5

http://myth42.stanford.edu:3000/midterm/urls/links.html?year=3000&user=Mendel

Problem #5 (4 points)
Your browser currently is on​ ​http://cs.stan.edu/a/b/c.html​. Write the resulting URLs
for clicking on each of the following links:

A. a

http://cs.stan.edu/a/b/123.html

Since the URL starts with only hierarchical part and doesn’t start with a ‘/’ char, this is a relative
URL. The new URL will keep all but the last component.

B. b

http://cs.stan.edu/234.html

The URL starts with ‘/’ so it is an absolute path. The new URL’s hierarchical component will be
completely replaced.

C. c

http://cs.stan.edu/a/b/c.html#c

The ‘#’ character indicates we are navigating to a fragment on the current page. So, the URL
remains the same, with the fragment added on to the end.

D. <a href=”http://google.com”

http://google.co​m

An entirely new URL is specified, so we navigate away from our current page. Credit was also
given to those who noticed the missing ‘>’ character on the opening tag.

6

Problem #6 (4 points)

class MyComponent extends React.Component {

 constructor(props) {

super(props);

this.state = {

 pageStatus: 'rendering...',

};

 }

 updatePageStatus() {

this.setState({

 pageStatus: 'rendered!',

});

 }

 render() {

this.updatePageStatus();

return (

 <div>

{this.state.pageStatus}

 </div>

);

 }

}

If we added this component to the view, our app would crash. Describe what the problem is
here.

the problem is that this.setState() triggers a render() call in react, which causes an infinite loop
between render() and this.updatePageStatus()

7

Problem #7 (6 points)
You are given the following HTML document:

<html>

 <head>

 </head>

 <body>

 <div id="container"></div>

 </body>

</html>

Write JavaScript code using the DOM to make the document look like this:

<html>

 <head>

 </head>

 <body>

 <div id="container">

 <p class="pClass">My paragraph.</p>

 My span.

 </div>

 </body>

</html>

You may NOT use assignment to the innerHTML in your solution.

Example solution:
var container = document.getElementById('container');

var newP = document.createElement('p');

newP.className = 'pClass';

newP.textContent = 'My paragraph.';

container.appendChild(newP);

var newSpan = document.createElement('span');

newSpan.id = 'mySpan';

newSpan.style.visibility = 'hidden';

newSpan.textContent = 'My span.';

container.appendChild(newSpan);

2 points awarded for correctly accessing the container, 2 points for

correctly creating/adding <p>, 2 points for correctly creating/adding

8

Problem #8 (8 points)
Given the following HTML file, what will the five DOM expressions below return?

<html>
 <head>

 <title>getElementById example</title>

 </head>

 <body>

 <div id="div1">CS142 div1</div>

 <div id="div2">

 <div id="div3" class="coolDiv">CS142 div3</div>

 CS142 div4

 <div id="div5" class="redDiv">CS142 div5</div>

 </div>

 <div id="div6">

 <h2>This is a header.</h2>

 <p>This is a paragraph.</p>

 <b class="boldText">This is bold.

 <i>This is italic.</i>

 </div>

 </body>

</html>

A. document.getElementById('div1').textContent ​CS142 div1

B. document.getElementsByTagName('p')[0].innerHTML ​This is a paragraph.
The <p> tags are not included.

C. document.getElementsByClassName('boldText').length ​ 2
We search the entire document and there are 2 elements wil class=”boldText”

D. document.getElementById('div5').parentNode.nextElementSibling.firstElem

entChild.tagName ​ H2

E. document.body.firstElementChild.nextElementSibling.nextElementSibling.g

etElementsByTagName('span').length ​ 0
We only search div6, which has 0 elements

9

Problem #9 (6 points)
You are initially given this simple HTML document containing two buttons:

<html>

 <head>

 </head>

 <body>

 <button id="cs109Button">Enroll in CS 109</button>

 <button id="cs142Button">Enroll in CS 142</button>

 </body>

 <script>

function Course(courseName) {

 this.courseName = courseName;

 this.id = courseName + '_id';

 document.getElementById(courseName + 'Button').onclick = function(e){

 console.log('The target for this event is ' + e.target.id);

 console.log('The currentTarget for this event is ' +

 e.currentTarget.id);

 console.log('Successfully enrolled in ' + this.courseName);

 };

 }

 var cs142 = new Course('cs142');

 </script>

</html>

A. When you click on the button with the text "Enroll in CS 142", what gets printed to the
console? Explain why.

The target for this event is cs142Button
The currentTarget for this event is cs142Button
Successfully enrolled in null/undefined
The target and currentTarget ids are both cs142Button because the it is the element that
triggered the event (target) as well as the element the event is registered on (currentTarget).
this.courseName is undefined because in the scope of the event listener, this refers to the
element the listener is being registered on, ie the button element.

B. When you click on the button with text "Enroll in CS 109", what gets printed to the
console? Explain why. ​Nothing because we did not initialize a Course object for 'cs109',
which would have installed an event listener on that button.

10

Problem #10 (4 points)
You are given the following HTML document and JavaScript which adds event listeners to some
of your document elements (hint: the 3rd argument of addEventListener is useCapture):

<html>

 <head>

 </head>

 <body>

 <div id="outerDiv">

 div id="innerDiv">CLICK ME</div>

 </div>

 </body>

 <script>

var body = document.body;

var innerDiv = document.getElementById('innerDiv');

var outerDiv = document.getElementById('outerDiv');

innerDiv.addEventListener("click", function (e) {

 console.log('div-inner-bubble');

}, false);

outerDiv.addEventListener("click", function (e) {

 console.log('div-outer-bubble');

}, false);

body.addEventListener("click", function (e) {

 console.log('body-bubble');

}, false);

body.addEventListener("click", function (e) {

 console.log('body-capture');

 e.stopPropagation();

}, true)

 </script>

</html>

What gets printed to the console when you click the words "CLICK ME"? Explain your answer:

‘body-capture’ is the only thing printed out. The capture phase comes first, and so the fourth
event listener is triggered first. It prints out and then it stops propagation for the event. This
means that the event will not propagate to the event listeners that would be triggered later.

11

Problem #11 (4 points)

If this program is executed, what will be logged on the console?

function Friend() {

 this.arrive = function () {

 console.log('Hello');

 };

}

var friend1 = new Friend();

var friend2 = new Friend();

friend2.arrive = function () {

 console.log('Hi');

};

friend1.arrive();

friend2.arrive();

Friend.prototype.leave = function () {

 console.log('Bye');

};

friend1.leave();

friend2.leave();

var friend3 = new Friend();

friend3.leave();

friend3.leave = function () {

 console.log('Adieu');

};

friend3.leave();

friend2.leave();

12

Problem #12 (4 points)
For each of the testing programs list below, classify them as examples of:

● unit testing
● end-to-end testing

Briefly explain your answer.

A. A program opens a browser, navigates to a web app, and makes sure that the log in and
sign in process works.

 End to end testing. This program is testing various parts of the application, as opposed to a
single component. It also programmatically interacts with actual browser / application.

B. A program checks that a sidebar component collapses correctly.

Unit testing: This program tests a very specific function of a single component (ie. just the
collapsing property of the sidebar).

C. A program utilizes mock components and DOM for testing.
Unit testing. This program mocks components and the DOM as opposed to interacting
with the actual application, which is a feature of unit testing.

D. A program containing:
describe('sorting the list of users', function() {

 it('sorts in descending order by default', function() {

var users = ['jack', 'igor', 'jeff'];

var sorted = sortUsers(users);

expect(sorted).toEqual(['jeff', 'jack', 'igor']);

 });

 });

Unit Testing. This code block just tests a single function (sort), independently of the web
application.

13

Problem #13 (6 points)
JavaScript contains two keywords for declaring a variable: ​var​ and ​let​. Although both declare
variables without specific types, they behave differently. For each of the following two code
fragments, state what the console log output would be if ​VARLET​ was set to ​var​ and ​let​.
Assume that code is run using "use strict" JavaScript rules.

Code Fragment A Code Fragment B

try {

 i = 10;

 for (VARLET i = 0; i < 5; i++) {

 console.log(i);

 }

 console.log(i);

} catch (err) {

 console.log("ERROR");

}

try {

 for (VARLET j = 0; j < 5; j++) {

 console.log(j);

 }

 console.log(j);

} catch (err) {

 console.log("ERROR");

}

A: ​VARLET = ​var ​console log output: B: ​VARLET =​ ​var ​console log output:

0
1
2
3
4
5

0
1
2
3
4
5

A: ​VARLET =​ ​let ​console log output: B:​ VARLET =​ ​let ​console log output:

ERROR 0
1
2
3
4
ERROR

14

Problem #14 (6 points)
The functions and properties defined in JavaScript class definitions end up being stored in
various objects when instances of the class are created. Some of the objects used include:

● Instance - The instance object
● Prototype - The prototype object of an instance
● Constructor - The constructor function of the class

For each of the parts of the class listed below, state which of the above objects they end up in.
Provide a brief explanation of your answer.

A. Class methods
Our intended answer was prototype. However, we realized there was some ambiguity
with the phrase class methods so we also accepted constructor. When you create a
method for a class you want to add it to the prototype so that you can be efficient with
memory. You would therefore do Classname.prototype.methodName = function ()...

B. Class static properties
Class static properties are used when you want to have information associated with a
particular class but it doesn’t rely on any specific information about an instance. If I had
function Car and every car made the same sound, I could do something like Car.sound =
“Honk”; note that to use this, I would write Car.honk. I could not do Car redCar = new
Car(); redCar.honk; Because functions even constructors are treated like objects, you
can add properties to them. The answer is therefore constructor.

C. Instance properties
An instance property is the information that distinguishes different objects of the same
class. For instance, if I had class Rectangle would have instance properties associated
with width and height. This needs to be in the instance of the object because it is unique
to the object.

15

Problem #15 (4 points)
Write a JavaScript function (create_a_closure) that causes a closure to be created when called.
The created closure should contain the variables ​myNum​, ​myStr​, ​myBool​ declared below:

let myNum = 1;
let myStr = '1';
let myBool = true;

function create_a_closure() {

// Closures are create with function definitions

 function makeAclosure() {

// To make a closure contain a variable we just need to access it

return [myNum, myStr, myBool];

}

 return makeAclosure;

}

Common mistakes:

● Redeclaring myNum, myStr, and myBool inside of create_a_closure. This
definitions hide the global variables and cause them not to be in the closure.

● Calling makeAclosure (e.g. ​makeAclosure()​). This would result in a closure
being created and then immediately destroyed. Since this seemed to be
compatible with the problem statement (create a closure) it was acceptable.

16

Problem #16 (4 points)
For each of the JavaScript code fragments below, describe what would be printed to the
console log when the code is run. Recall the ​setTimeout ​function take an arguments a
function and number of milliseconds and will call the function in the specified number of
milliseconds.

A.
f​or (var x = 1; x < 5; x++) {
 setTimeout(function () { console.log(x); }, 1000*x);

}

The above loop contains a function definition that will create a closure pointing at the
variable 'x'. Four functions with closure contain x well be created and scheduled to run
in 1, 2, 3, and 4 seconds. When they run x will have been set to 5 (the exit contain of the
loop). So the output will be:

5
5
5
5

B.

 function f(a) { console.log(a); }

 for (var x = 1; x < 5; x++) {

 setTimeout(function () { f(x); }, 1000*x);

 }

As above, the loop will create four functions with closures pointing at x. Also as above,
they won't run into the loop has finished. At that time x will be 5. When the functions run
they call function f with an argument of 5 (f(5)) so the output will be:

5
5
5
5

17

Problem #17 (4 points)
class ClickComponent extends React.Component {

 constructor(props) {

super(props);

 this.handleClick1 = this.handleClick1.bind(this);

 }

 handleClick1() {

 console.log("Handle Click 1 called");

 }

 handleClick2() {

 console.log("Handle Click 2 called");

 }

 render() {

return (

 <div>

 <div onClick={this.handleClick1}>Click #1 using .bind</div>

 <div onClick={() => this.handleClick2()}>

 Click #2 using arrows

 </div>

 <div onClick={() => this.handleClick1()}>

Click #3 using combined

 </div>

 </div>

);

 }

}

The event handling patterns use on the <div> regions with content "Click #1 ..." and "Click #2
..." follow one of the standard React patterns for handling events discussed in lecture. The
"Click #3 ..." uses a strange combination of both the .bind and arrow function approaches.
Would this work? Justify your answer.

This will still work they way we want it to. Because we use the arrow function, the context of this
does not change and still refers to ClickComponent. And (while redundant), in the constructor
we bound the function to the ClickComponent.

18

Problem #18 (4 points)
Use the definition of ​ClickComponent​ from Problem #17 in the question.

If you created one of these ClickComponent (e.g. had ​<ClickComponent />​ in some render
function) somewhere inside of the ReactJS runtime it would do a
 new ClickComponent()

which would create a new object of class ClickComponent. Like all class JavaScript objects,
this newly created object (​object​) would have a prototype object (​prototype​). Fill in the table
below indicating if the specified code fragment would generate accesses to these two objects
(​object​ and ​prototype) ​by:

Marking R if the code fragment reads the object.
 Marking W if the code fragment writes (or reads and writes) the object.

Leave the cell blank if no access is made. Note for the onClick fragments assume that click
event happens.

JavaScript Code Fragment object prototype

this.handleClick1 = this.handleClick1.bind(this); W R

onClick={this.handleClick1} R

onClick={() -> this.handleClick2} R R

onClick={() -> this.handleClick1} R

The first row has an assignment to ​this.handleClick1​ which will generate a write to the
object. The write will create the property ​handleClick1​ in the object. The right hand side of the
assignment does a read of ​handleClick1 ​first in the object and since it is not there (yet) it will
go up to the prototype object and read it to find the handleClick1 routine.

The second row accesses and finds the newly created ​handleClick1 ​in the object so is a read
of the object. No going up the prototype chain is needed.

The third row does a read of handleClick2. It will first check the object and not finding it will go
up and look in the prototype.

The fourth row does a read of handleClick1. It will first check the object and finds it.

19

Additional page to make page count even - no problem.

20

