CS 142 Midterm Examination

Winter Quarter 2022

You have 1.5 hours (90 minutes) for this examination; the number of points for each
question indicates roughly how many minutes you should spend on that question. Make
sure you print your name and sign the Honor Code below. During the examination you
may consult two double-sided pages of notes; all other sources of information, including
laptops, cell phones, etc. are prohibited.

| acknowledge and accept the Stanford University Honor Code. | have neither given nor
received aid in answering the questions on this examination.

(Signature)

(Print your name, legibly!)

@stanford.edu

(Stanford email account for grading database key)

Problem #1 (5 points)

The HTML language standards group has added tags like <article>, <section>, <footer>,
and <summary> that could have easily been implemented in older HTML using a div tag with a
class attribute specifying the formatting that should be done for that type of document section.

Explain how adding these new tags to HTML makes sense (i.e. consistent with both the
philosophy and practical usage of HTML) even though the formatting they direct can be done
relatively easily with existing div tags.

Problem #2 (5 points)

When a web browser gets an HTTP response containing a text document rather than an HTML
document, the browser switches off the HTML processing engine and shows the text document
verbatim. An alternative approach would have been to assume the document is the body of an
HTML document that is missing the html and body tags.

Explain what would happen if the browser treated the text document as the body of an HTML
document and renders the text document using this approach. Describe what you expect the
browser to display if given a commonly used text document such as a text-only email or a C++
header file. List any differences from what is shown using the verbatim approach.

Problem #3 (6 points)

Some CSS properties are inherited (e.g. font-size) and some properties are not inherited (e.g.
border). For the inherited properties, does a DOM Node inherit from the parentNode or

offsetParent? Explain your answer.

Problem #4 (6 points)

Assume you are given a deeply nested HTML document with no CSS styling and a global
JavaScript variable named element that points to a DOM leaf node somewhere in the middle of
the document many tree levels down from the root node.

Show JavaScript code that changes element.offsetParent without explicitly assigning to
element.offsetParent.

Problem #5 (8 points)

Assume you are given the following simple HTML document that has some styling on the body
tag.

<html>
<body style="border: 1px black solid;">
<h2>Introduction</h2>
<p>
There are several good reasons for taking
<1>CS142: Web Applications</i>:
</p>

You will learn a variety of interesting concepts.</1li>
<1i>It may inspire you to change the way software is developed.

</body>
</html>

It renders in a properly working browser to look like:

Introduction

There are several good reasons for taking CS142: Web Applications:

e You will learn a variety of interesting concepts.
e It may inspire you to change the way software is developed.

Assume you are given a browser that has a broken CSS implementation so the "border"
properties switch to being inherited by all node elements (not #text nodes). Show your
understanding of the implication of this by drawing the additional bounding boxes (if any) that
would appear on the rendered view above.

Problem #6 (6 points)

When building traditional web pages (i.e. static HTML documents), the use of element styling
(style=attributes) is discouraged in favor of using CSS style sheets for styling. When
programming in React.js with JSX, element styling (style=attributes) is not discouraged. Explain
the problem with using “style=attributes” in static HTML documents that is not present in JSX

usage.

Problem #7 (8 points)

Below we list pairs containing an HTML hyperlink and a URL that resulted from a click on the
hyperlink (i.e. resultant URL).
(a) Click http://localhost:999/a/b/c.html
(b) Click http://localhost:999/a/b/c.html
(c) Click http://localhost:999/z/a/b/c.html
(d) Click http://localhost:999/a/b/c.html#foo

None of the URLs in the hyperlinks are full URLs meaning the browser's current location URL of
the page containing the hyperlink is used in determining the resultant URL. For each of the pairs
(a)—(d), describe what the browser's current location URL must have been to have the given
resultant URL. Note many possible current locations could cause the listed resultant URL. Your
answer should describe the possible values for all the parts of the current URL (i.e. scheme,
hostname, port number, hierarchical portion, query parameters, fragment).

(@)

(c)

Problem #8 (7 points)

JavaScript ES6 extensions added some familiar syntax to define classes but continued to use
the object-oriented programming conventions long-used in JavaScript. The below syntax
defines a JavaScript class (Foo) that has a member property (member_prop) and a member
method (member_method). Code allocates an instance of the class Foo into the variable f.

class Foo {
static static _prop = 1;
constructor() {
this.member _prop = 2;

}

member_method() { console.log("member method call"); }

}

let £ = new Foo();

(a) Show the JavaScript expression that would add one to member_prop.

(b) Show the JavaScript expression that would add two to static_prop.

(c) By maintaining compatibility with the old object-oriented programming conventions,
these classes exhibit some weird behavior. For example, although we can call the
member_method function by the expression f.member_method(), we can also smash
the member_method by replacing it with a number:

f.member_method = 32;
After the assignment f.member_method is now the number 32 rather than a function.
Although this is consistent with the dynamic typing of JavaScript, executing:

delete f.member_method;
cause it to go back to being the original method function rather than undefined. Explain
this type of weird behavior.

Problem #9 (6 points)

When looking at a DOM node other than the root of the tree, there are two pointers that point at
nodes further up the tree towards the root (parentNode and offsetParent), following either of
these pointers up the tree will eventually get to the body tag node. Considering these two paths
up the tree, answer the following questions:

(a) Are the nodes in the parentNode path always in the offsetParent path? Explain your
answer.

(b) Are the nodes in the offsetParent path always in the parentNode path? Explain your
answer.

10

Problem #10 (9 points)

Consider the following HTML document:

<html>
<body>
<div id="one">
One
<div id="two">
Two
<div id="three">
Three
<div id="four">
Four
</div>
</div>
</div>
</div>
</body>
</html>

We run the following JavaScript on the document:

const divs = window.document.getElementsByTagName('div');
for (let i = 0; i < divs.length; i++) {
divs[i].addEventListener("click", (e) =>
console.log('bubble’,
e.currentTarget.id,
e.currentTarget == e.target,
e.currentTarget.textContent.replace(/[\s]/g, '')),

false);
divs[i].addEventListener("click", (e) =>
console.log('capture’,
e.currentTarget.id,
e.currentTarget == e.target,
e.currentTarget.textContent.replace(/[\s]/g, '')),

true);

Hint: the third parameter in addEventListener is named useCapture.

problem continued on next page...

11

Problem #10 continued

Describe what the output would be if the user were to click on the word "Three" in the document.

12

Problem #11 (6 points)

AngularJS showed the usefulness of binding JavaScript values in controllers to expressions in
an HTML template. A programmer could simply change the value of a JavaScript variable and
AngularJS would detect and re-render the component with the updated template expressions.

Although this binding was a hit with programmers, it required AngularJS to compare all the
expressions in the templates to see if some state had changed every time some JavaScript
code ran. For views with much state, this checking for changed JavaScript state variables got
too expensive to be useful.

Explain the mechanism ReactJS used to be able to employ a similar binding of JavaScript

variables to HTML template expressions yet didn't suffer large overheads when only small
amounts of the state changed.

13

Problem #12 (6 points)

Explain how a ReactJS web application can appear to behave like an old-style web application
(where the user clicked on hyperlinks to navigate between view "pages" and uses HTML forms
to input data), yet be considered a single page application.

14

Problem #13 (6 points)

If you resize a modern web app in a window, it is not unusual to see it just shrink to fit in the
smaller window but if you make the window small enough it will re-layout the app to better work
in the small window. Explain the browser’s mechanism that web app used to have this behavior.

15

Problem #14 (6 points)

Internationalization (118N) and Accessibility (ARIA) are two important properties of a web
application that frequently don't make it into the first release of a web application. When adding
features to a web application, the work can be considered independent if the changes required
don't interact with each other and features can be added by teams working concurrently. State
whether Internationalization (118N) and Accessibility (ARIA) are dependent or independent from

each other, and explain.

16

