
0/20 Questions Answered
TIME REMAINING

�� mins


Quiz #3

Q1 NodeJS's EventEmitter
5 Points

Node.js uses several programming patterns to help handle blocking

functionality in the single-threaded JavaScript runtime. The patterns include

using callback functions, promises, and the listener/emitter pattern (e.g.

Node.js's EventEmitter module - require('events')).

Assume you are given a NodeJS's EventEmitter object that documents the

following events:

Event Parameters

EventA (arg1, arg2)

EventB ()

Your project lead is far more comfortable with callback functions than

EventEmitters and asks you to write a function that converts the above

EventEmitter to use callback functions.

Write a ConvertEmitterToCallback routine that takes the emitter and a

callback function and turns emitted events into calls to the callback function.

The first parameter to the callback function should be the event that was

emitted with the remaining arguments being parameters to the event. For

example, emit('EventA', 1, 2) would generate a

 callback('EventA', 1, 2) call.

Demonstrate your understanding of EventEmitters by showing the code

needed to perform this conversion to callbacks:

function ConvertEmitterToCalllback(emitter, callback) {

Enter your answer here

}

Save Answer

Q2 EventEmitter mistakes
4 Points

Sometimes you can just look at code and tell the programmer likely made a

mistake. For example, the code might obviously generate an error (e.g.

 let o; o.prop = 1;) or the code might not do anything useful (e.g.

 x = 1; x = 3;). For each of the following pairs of statements, identify if

there looks to be a likely mistake or if it could be correct code.

Assume you have an EventEmitter named myEmitter in scope:

Q2.1
1 Point

myEmitter.emit('X', 'Hi');
myEmitter.emit('Y', 'Bye');

Save Answer

Q2.2
1 Point

code will generate an error

code doesn't do anything useful

code could be correct

myEmitter.emit('X', (x) => console.log('one',x));
myEmitter.emit('Y', (x) => console.log('two',x));

Save Answer

Q2.3
1 Point

myEmitter.on('X', 'Hi');
myEmitter.on('Y', 'Bye');

Save Answer

Q2.4
1 Point

myEmitter.on('X', (x) => console.log('one',x));
myEmitter.on('Y', (x) => console.log('two',x));

Save Answer

code will generate an error

code doesn't do anything useful

code could be correct

code will generate an error

code doesn't do anything useful

code could be correct

code will generate an error

code doesn't do anything useful

code could be correct

Q3 async module
3 Points

The node async module (i.e. require('async')) usage looks like:

async.each(items, function iteratee(item, callback) { ...

where the first argument (items) is the collection and the second argument is

the iteratee function that is called on each item. The iteratee function is

defined with two parameters item and callback . item is the item from the

collection being processed and callback is a function.

Describe what the function callback does when called:

Enter your answer here

Save Answer

Q4 ExpressJS
5 Points

An ExpressJS handler is always passed three arguments: two objects

(httpRequest and httpResponse) and a function (next) like:

function (httpRequest, httpResponse, next)

Express handlers access properties and call methods on the httpRequest and

httpResponse objects and sometimes will call the next function. Show your

understanding by answering the following questions about this:

Q4.1
3 Points

Explain why a handler might contain code that modifies the incoming

 httpRequest object and then subsequently calls the next function. Include

an example of why this ordering might be done.

Enter your answer here

Save Answer

Q4.2
2 Points

Explain why ExpressJS handlers that call httpResponse.send() rarely

subsequently call next .

Enter your answer here

Save Answer

Q5 Databases
3 Points

Object relational mapping (ORM) converts from the object data model to the

relational data model. Object definition languages (ODL) are found in ORM

systems and Mongoose help making mapping to the relational model possible.

Explain why without an ODL like Mongoose, mapping of MongoDB objects (i.e.

documents) to the relational model is difficult.

Enter your answer here

Save Answer

Q6 Session Hijack Attack
3 Points

Web application backends using the ExpressJS session middleware leave the

web application exposed to attacks that steal the session cookie but not

attacks involving forging session cookies. Explain how forging session cookies

is made difficult by the ExpressJS session module.

Enter your answer here

Save Answer

Q7 Session state
3 Points

If you had a web application structured like our photo app and you suddenly

lost all the session state in your backend, what ill effects would you expect the

users of your web applications to see? Be specific.

Enter your answer here

Save Answer

Q8 Input Validation
4 Points

Answer the following questions about input validation.

Q8.1
2 Points

Explain why validation needs to be done in the backend even if your frontend

can do all the same validation of input.

Enter your answer here

Save Answer

Q8.2
2 Points

Explain why validation is done in the frontend even if we have complete

validation in the backend.

Enter your answer here

Save Answer

Q9 Sanitization
3 Points

Explain what is meant by a module that sanitizes HTML to make sure it is free of

cross site scripting attacks. Include a description of what the sanitization

process must do.

Enter your answer here

Save Answer

Q10 Attacks and defenses
6 Points

When talking about the various attacks that web applications might be

subjected to, we presented several helpful technologies including

encryption/decryption, message authentication codes, and HTTPS certificates.

For each of the following attack types, select which of these technologies can

be helpful.

Q10.1
1.5 Points

Eavesdropper attacks

Save Answer

Q10.2
1.5 Points

Denial of service attacks

Save Answer

Q10.3
1.5 Points

Phishing attacks

encryption/decryption

message authentication codes

HTTPS certificates

None of the above

encryption/decryption

message authentication codes

HTTPS certificates

None of the above

Save Answer

Q10.4
1.5 Points

SQL injection attacks

Save Answer

Q11 Scale-out
3 Points

Explain why scale-out architectures are known for handling failures better than

scale-up architectures.

Enter your answer here

Save Answer

encryption/decryption

message authentication codes

HTTPS certificates

None of the above

encryption/decryption

message authentication codes

HTTPS certificates

None of the above

Q12 CDN
3 Points

A Content Distribution Network (CDN) doesn't work well for data that needs to

be updated frequently. Explain what the problem is with updating information in

a CDN.

Enter your answer here

Save Answer

Save All Answers Submit & View Submission 

https://www.gradescope.com/courses/224454/assignments/1105065/submissions/74250924

