
CS142 Lecture Notes - Web Servers

Web Servers
Mendel Rosenblum

CS142 Lecture Notes - Web Servers

Web Application Architecture

Web Browser Web Server

 HTTP

Storage System

In
te

rn
et

LA
N

2

CS142 Lecture Notes - Web Servers

Web Servers
● Browsers speak HTTP and Web Servers speak HTTP

○ Browsers: send HTTP request and get HTTP responses
○ Web Server: get HTTP requests and send HTTP responses

● HTTP is layered on TCP/IP so a web server:

loop forever doing:

accept TCP connection from browser

read HTTP request from TCP connection

process HTTP request

write HTTP response to TCP connection

shutdown TCP connection (except if Connection: keep-alive)

CS142 Lecture Notes - Web Servers

Processing HTTP requests - File reads
● Process HTTP GET index.html

int fd = open("index.html");

int len = read(fd, fileContents, sizeOfFile(fd));

write(tcpConnection, httpResponseHeader, headerSize);

write(tcpConnection, fileContents, len);

● Note open and read may have to talk to a slow disk device
○ Can process requests concurrently by starting a new thread or a new process per request

CS142 Lecture Notes - Web Servers

Processing HTTP requests - cgi-bin
● Process HTTP GET of index.php

runProgramInNewProcess(tcpConnection);

● Template processing program fetches models from database system

CS142 Lecture Notes - Web Servers

2nd Generation Web App Frameworks
Web server runs a program per request - the controller:

1. Parse URL and/or HTTP request body to get parameters to view

2. Use parameters to fetch model data from DBMS (typically a SQL relational DBMS)

3. Run HTML view template with model data to generate the HTML

4. Send a HTTP response with the HTML back to the browser

Rails runs a controller program per URL. Example: URL /rails_intro/hello

Runs controller hello.rb (Ruby program fetches models - ORM)

Applies to view template hello.html.erb (HTML embedded with Ruby)
JavaScript?: An asset (like an image or css) you can include

CS142 Lecture Notes - Web Servers

Web servers for JavaScript frameworks
● Most of the web app is simple static files - any web server speaking HTTP

○ View templates (HTML, CSS)
○ JavaScript files

● Remaining browser⇔ server communication around model data
○ CRUD (Create Read Update Delete) of model data
○ Session info (e.g. login, etc.) (Later…)

● Low requirements on web request processing
○ HTTP GET static files
○ Model data operation - mostly doing DBMS operations

