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Problem #1 (10 points)

The CS142 Photo Sharing application you built used Express.js session management software

express-session configured to use the default server-side session storage, MemoryStore
which stores the session state in Node.js memory. Consider an alternative session store called

unsafe-cookie-session that works by storing the session state object as a cookie with the
object encoded as a JSON string. This cookie is attached to the session much in the same way
that express-session attaches its cookie.

A. Describe the key advantage of unsafe-cookie-session compared to
express—-session.

B. Assume a threat model that includes an untrustworthy user of our application. Describe
the damaging attacks the user could do with unsafe-cookie-session where the
session state is stored in a cookie. Describe what kind of changes we could make to
produce a safe-cookie-session that defeats the attacks yet still gets the benefit
listed in A.



Problem #2 (10 points)

The CS142 Photo Sharing application session management (express-session described in
problem #1) had an unfortunate behavior in that a browser refresh resulted in the user being
logged out.

A. Describe what happened to the web application that resulted in the user no longer being
logged in.

B. Sketch out changes you would need to make in order for your Photo Sharing web
application to handle a browser refresh without the user having to log in again.



Problem #3 (10 points)

In order for our CS142 Photo Sharing application to run using its MVC pattern we need to have
model data from the Node.js backend shipped to our browser-based frontend. In general there
are two ways this shipping of model data can occur. The code running in the browser can "pull"
the model data from the server or the code running in the server can "push" model data to the
browser.
A. Which of the two ways ("push" or "pull") would you say our Photo Sharing application
used? Briefly explain your answer.
B. If we could magically have the other way that is not the supplied answer in Part A
available for our application, what might that other way be useful for?



Problem #4 (8 points)

Our discussion of full stack web applications involved mention of two types of data: model data
and session state, each of which we end up treating very differently. For example, we used
different storage systems for them. Is there ever a scenario when some application data could
be both model data and session state? If so, give a plausible example. If no, briefly explain why

not.



Problem #5 (8 points)

Your web application has become popular over in Europe which has just passed the Model Data
Protection Act (MDPA). Under the MDPA all model data of web applications has to be
encrypted when transferred over the Internet. Sketch out a change we could make to our Photo
Sharing application to conform with the MDPA.



Problem #6 (8 points)

When your web browser connects to a web server, one of its first steps is to communicate with a
DNS resolver, which tells your browser the IP address associated with a host name in the URL
(for instance, the IP address of the machine you should connect to to access www.google.com
might be 216.58.194.164). Your browser then attempts to connect to the server with that IP
address. Unfortunately, DNS lookups are not particularly secure, so an attacker might be able to
trick your browser into connecting to an evil server instead of a real Google server.

As a savvy student of CS 142, you're aware of the dangers of the Internet and are careful to
always connect to your bank's website (www.mybank.com) over HTTPS. Unfortunately, an
attacker has managed to gain control of your local DNS resolver and directs you to a server
under his control (10.0.0.2) instead of the real bank server (10.0.0.1). Will HTTPS protect you
from this attack? Please take two or three sentences to justify your answer.



Problem #7 (8 points)

If you receive an email and click on a link for https://www.bankofthevvest.com (note:
vvest, not west.) Assume that www.bankofthevvest.com is under the attacker's complete
control. Will your browser provide indication that the site you are visiting is not legitimate? If not,
explain why. If so, how would it likely show up?



Problem #8 (10 points)

In class we talked about a ORM (Object Relational Mapping) layer that allowed objects of web
application data to be mapped into a relational data model. You could also imagine a ROM
(Relational Object Mapping) layer that maps a relational data model into a object/document
database like MongoDB. Using your knowledge of relational and object data models, describe
how an ROM might work by sketching the mapping of the relational concepts of tables with
rows and columns, and primary and secondary indexes. A mapping layer would take these
relational model concepts and implement them using features of the object model. Describe this
mapping for the listed relational concepts.



Problem #9 (8 points)

In Project #5 we introduced the FetchModel function in your controllers that fetched data from
the server. We had you implement the fetching using xXMLHt tpRequest. In order to prevent
unwanted behavior in Angular, we suggested that you use $scope. $Sapply. Had the
implementation used a AngularJS service $resource and $http the suggestion to use
$Sscope. $Sapply wouldn't have been needed. Explain the problem that necessitated
$Sscope.Sapply and why it wasn't needed with the AngularJS model fetching services.
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Problem #10 (8 points)

The following is an Express.js handling code for a particular URL with an "id" parameter.
A. What will go wrong in the following code, and why?
B. How would you fix it?

var user photos = [];
Photo.find({user id: request.params.id}, function (err, photos)
if (err) {
response.status (400) .send (JSON.stringify(err));
return;
}
// process photos...
user photos = photos;

1)

response.status (200) .send (JSON.stringify (user photos));

{
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Problem #11 (8 points)

In the context of the photo sharing web app that you worked on, give an example of user input
validation that we need only do on the frontend but not on the backend and an example of input

validation that we could get away with doing only on the backend.
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Problem #12 (8 points)

A software engineering course at Stanford had students build a web server with a focus on a
clean modular decomposition where each module was free of code with knowledge belonging to
another module. One group proposed the following processing pipeline for HTTP requests:

1. Read request - Read the full HTTP request from the data coming into the TCP socket
2. Parse HTTP request - Extract out the header properties and body of the HTTP request
3. Dispatch request - Call the handler function based on the URL and HTTP method

Using your knowledge of HTTP request headers, describe why this decomposition lost points for
not being clean with the same work needing to be done in multiple steps.
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Problem #13 (8 points)

In the class projects we used a simple Node.js web server program (webServer.js) running in
the local environment to allow the browser to fetch the project files from the local file system.
Browsers are perfectly capable of fetching files from the local file system using URLs specifying
the "file:" protocol. Explain the reason we couldn't just use the "file:" protocol to fetch the various
pieces of our web application given that everything fetched was coming from the local machine.
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Problem #14 (10 points)

A. Describe the basic approach of a Cross-Site Request Forgery (CSRF) attack.

B. The request forgery part of the CSRF has limitations on the possible requests that can
be forged. In particular only a relatively small set of the request types can be used in the
attack. Describe this limitation and the reason behind it.
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Problem #15 (12 points)

Consider the following Express.js program:

var express = require('express');

var app = express();

app.use (function (request, response, next) {
request.value = 'foo';
next () ;

)

app.get ('/test', function (request, response) {
response.status (200) .send (request.value);
1)

app.use (function (request, response, next) {
request.value = 'bar';
next () ;

}) s

app.get ('/test2/:test3', function (request, response) {

var paramValue request.params.test3;

var queryValue request.query.test3;

response.status (200) .send ( (paramValue === '4' &§& queryValue ===
151
? 'baz' : 'qux');
}) g
app.use (function (request, response, next) {
response.status (404) .send ('N/A") ;

}) s

app.listen (3000, function () {}):;

Question continued on next page ...



.... continued from previous page.

Answer the following questions below. Hint: When processing requests, ExpressJS executes
app.use and matching app . get callbacks in the order in which the app. * statements are
executed.

A. Write down the response that the web server sends back for a GET /test request.

B. Write down the response that the web server sends back for a GET /test3 request.

C. Write down the type of request (specify verb + url) that should be made to get a 'qux’
response. Please include any necessary url path components or query strings. (e.g.,
sample (incorrect) answer: GET /test?q=hi)

D. Write down the type of request (specify verb + url) that should be made to get a 'baz’
response. Please include any necessary url path components or query strings. (see
sample answer above)
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Problem #16 (10 points)

The Node.js runtime includes a function set Immediate that allows the call to directly add a
callback to the Node.js event loop. It is like the DOM's setTimeout function except there is no
delay.

Consider the following Node.js program:

for (var i = 0; i < 2; i++) {
setImmediate (function(err) {
console.log (1)

)

console.log (4);

Write down what is printed after the for block code above is executed (Order matters).

Suppose the setTmmediate call is wrapped in an immediately invoked function expression
like:

for (var i = 0; 1 < 2; i++) {
(function (1) {
setImmediate (function (err) {
console.log (i)
1)
) (1)

console.log(4);

Does this affect the order/contents of what is printed to the console? If yes, state so and write
down what is now printed after the for block above is executed (Order matters). If no, state so
and briefly justify your answer.
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Problem #17 (8 points)

REST and GraphQL are two different protocols used to fetch model data for web applications.
Assume you have a web application with users located in countries where connections to the
web app's backend servers use low bandwidth networks with long round trip times. Is either
REST or GraphQL advantageous over the other under these communication characteristics?

Justify your answer.
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Problem #18 (8 points)

Which of the components in a MVC pattern would be inappropriate to put on a Content
Distribution Network? Justify your answer.
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Problem #19 (10 points)

While surfing the web while procrastinating on working on your CS142 project, you run across a
news article that claims a web application enabled a Cross Site Scripting Attack that in turn
launched a SQL Injection Attack.

A. Does a Cross Site Scripting Attack launching a SQL Injection Attack make any sense?

Justify your answer.
B. Would reversing the terms with a SQL Injection Attack launching a Cross Site Scripting

Attack make sense? Justify your answer.
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Problem #20 (10 points)

The reminder emails from the Stanford Axess system used to contain useful hyperlinks for
taking the reader to the right place in the Axess web application. At some point in the recent
past Stanford IT removed the hyperlinks from the email and included the note:

Note: Hyperlinks are purposefully excluded from this email notification as a deterrent to
. Referenced sites in bold may be accessed by adding '.stanford.edu’ to the

site name or by searching from the Stanford home page.

State what the missing word in the above note is and how this change is intended to help as an
deterrent.
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