
CS142 Lecture Notes - Database.js

Storage Tier
Mendel Rosenblum



CS142 Lecture Notes - Database

Web Application Architecture

Web Browser Web Server 

    HTTP

Storage System

In
te

rn
et

LA
N

2



CS142 Lecture Notes - Database

Web App Storage System Properties 

● Always available - Fetch correct app data, store updates
○ Even if many request come in concurrently - Scalable

■ From all over the world
○ Even if pieces fail - Reliable / fault tolerant

● Provide a good organization of storing an application data
○ Quickly generate the model data of a view

○ Handle app evolving over time

● Good software engineering: Easy to use and reason about



CS142 Lecture Notes - Database

Relational Database System
● Early on many different structures file system, objects, networks, etc.

○ The database community decided the answer was the relational model
■ Many in the community still think it is.

● Data is organized as a series of tables (also called relations) 

A table is made of up of rows  (also called tuples or records)

A row is made of a fixed (per table) set of typed columns
● String: VARCHAR(20)
● Integer: INTEGER
● Floating-point: FLOAT, DOUBLE
● Date/time: DATE, TIME, DATETIME
● Others



CS142 Lecture Notes - Database

Database Schema

Schema: The structure of the database

● The table names  (e.g. User, Photo, Comments)

● The names and types of table columns

● Various optional additional information (constraints, etc.)



CS142 Lecture Notes - Database

Example: User Table ID first_name last_name location

1 Ian Malcolm Austin, TX

2 Ellen Ripley Nostromo

3 Peregrin Took Gondor

4 Rey Kenobi D'Qar

5 April Ludgate Awnee, IN

6 John Ousterhout Stanford, CA

Column types
ID                        - INTEGER 
first_name - VARCHAR(20)

last_name  - VARCHAR(20)

location   - VARCHAR(20)



CS142 Lecture Notes - Database

Structured Query Language (SQL)

● Standard for accessing relational data
○ Sweet theory behind it: relational algebra

● Queries: the strength of relational databases
○ Lots of ways to extract information

○ You specify what you want

○ The database system figures out how to get it efficiently

○ Refer to data by contents, not just name



CS142 Lecture Notes - Database

SQL Example Commands
CREATE TABLE Users (

    id INT AUTO_INCREMENT,

    first_name VARCHAR(20),

    last_name VARCHAR(20),

    location VARCHAR(20));

INSERT INTO Users (

   first_name, 

   last_name,

   location)

   VALUES 

   ('Ian', 

   'Malcolm', 

    'Austin, TX');

DELETE FROM Users WHERE

   last_name='Malcolm';

UPDATE Users

    SET location = 'New York, NY

    WHERE id = 2;

SELECT * FROM Users;

SELECT * from Users WHERE id = 2;



CS142 Lecture Notes - Database

Keys and Indexes
Consider a model fetch: SELECT * FROM Users WHERE id = 2

Database could implement this by:

1. Scan the Users table and return all rows with id=2
2. Have built an index that maps id numbers to table rows. Lookup result from 

index.

Uses keys to tell database that building an index would be a good idea

Primary key:  Organize data around accesses 
 PRIMARY KEY(id) on a CREATE table command

Secondary key:  Other indexes (UNIQUE)



CS142 Lecture Notes - Database

Object Relational Mapping (ORM)
● Relational model and SQL was a bad match for Web Applications

○ Object versus tables 
○ Need to evolve quickly 

● 2nd generation web frameworks (Rails) handled mapping objects to SQL DB

● Rail's Active Record
○ Objects map to database records
○ One class for each table in the database (called Models in Rails)
○ Objects of the class correspond to rows in the table
○ Attributes of an object correspond to columns from the row

● Handled all the schema creation and SQL commands behind object interface



CS142 Lecture Notes - Database

NoSQL - MongoDB
● Using SQL databases provided reliable storage for early web applications 

● Led to new databases that matched web application object model  

○ Known collectively as NoSQL databases

● MongoDB - Most prominent NoSQL database

○ Data model: Stores collections containing documents (JSON objects)
○ Has expressive query language 
○ Can use indexes for fast lookups
○ Tries to handle scalability, reliability, etc. 



CS142 Lecture Notes - Database

Schema enforcement
● JSON blobs provide super flexibility but not what is always wanted

○ Consider: <h1>Hello {person.informalName}</h1>
■ Good:  typeof person.informalName == 'string' and length < something
■ Bad: Type is 1GB object, or undefined, or null, or …

● Would like to enforce a schema on the data
○ Can be implemented as validators on mutating operations

● Mongoose - Object Definition Language (ODL)
○ Take familiar usage from ORMs and map it onto MongoDB 
○ Exports Persistent Object abstraction
○ Effectively masks the lower level interface to MongoDB with something that is friendlier 



CS142 Lecture Notes - Database

Using: let mongoose = require('mongoose');
1. Connect to the MongoDB instance

mongoose.connect('mongodb://localhost/cs142');

2. Wait for connection to complete:  Mongoose exports an EventEmitter

mongoose.connection.on('open', function ()  {

  // Can start processing model fetch requests

});

mongoose.connection.on('error', function (err) { });

Can also listen for connecting, connected, disconnecting, disconnected, etc.



CS142 Lecture Notes - Database

Mongoose: Schema define collections
Schema assign property names and their types to collections

String, Number, Date, Buffer, Boolean
Array -  e.g. comments: [ObjectId]
ObjectId - Reference to another object
Mixed - Anything

    var userSchema = new mongoose.Schema({
  first_name: String,

  last_name: String,

  emailAddresses: [String],

  location: String

  });



CS142 Lecture Notes - Database

Schema allows secondary indexes and defaults
● Simple index

first_name: {type: 'String', index: true}

● Index with unique enforcement

user_name: {type: 'String', index: {unique: true} }

● Defaults

date: {type: Date, default: Date.now }



CS142 Lecture Notes - Database

Secondary indexes
● Performance and space trade-off

○ Faster queries: Eliminate scans - database just returns the matches from the index
○ Slower mutating operations: Add, delete, update must update indexes 
○ Uses more space: Need to store indexes and indexes can get bigger than the data itself

● When to use 
○ Common queries spending a lot of time scanning
○ Need to enforce uniqueness 



CS142 Lecture Notes - Database

Mongoose: Make Model from Schema
● A Model in Mongoose is a constructor of objects - a collection

May or may not correspond to a model of the MVC

let User = mongoose.model('User', userSchema);

Exports a persistent object abstraction

● Create objects from Model

User.create({ first_name: 'Ian', last_name: 'Malcolm'}, doneCallback);

function doneCallback(err, newUser) {

       assert (!err);

       console.log('Created object with ID', newUser._id);

     }



CS142 Lecture Notes - Database

Model used for querying collection
● Returning the entire User collection

User.find(function (err, users) {/*users is an array of objects*/ });

● Returning a single user object for user_id

User.findOne({_id: user_id}, function (err, user) { /* … */ });

● Updating a user object for user_id

User.findOne({_id: user_id}, function (err, user) {

// Update user object - (Note: Object is "special")

user.save();

});



CS142 Lecture Notes - Database

Other Mongoose query operations - query builder
let query = User.find({});

● Projections
query.select("first_name last_name").exec(doneCallback);

● Sorting 

query.sort("first_name").exec(doneCallback);

● Limits
query.limit(50).exec(doneCallback);

query.sort("-location").select("first_name").exec(doneCallback);



CS142 Lecture Notes - Database

Deleting objects from collection
● Deleting a single user with id user_id

User.remove({_id: user_id}, function (err) { } );

● Deleting all the User objects 

User.remove({}, function (err) { } );


